210 research outputs found

    Dominant speaker detection in multipoint video communication using Markov chain with non-linear weights and dynamic transition window

    Get PDF
    This paper proposes an enhanced discrete-time Markov chain algorithm in predicting dominant speaker(s) for multipoint video communication system in the presence of transient speech. The proposed algorithm exploits statistical properties of the past speech patterns to accurately predict the dominant speaker for the next time state. Non-linear weights-based coefficients are employed in the enhanced Markov chain for both the initial state vector and transition probability matrix. These weights significantly improve the time taken to predict a new dominant speaker during a conference session. In addition, a mechanism to dynamically modify the size of the transition probability matrix window/container is introduced to improve the adaptability of the Markov chain towards the variability of speech characteristics. Simulation results indicate that for an 11 conference participants test scenario, the enhanced Markov chain prediction algorithm registered an 85% accuracy in predicting a dominant speaker when compared to an ideal case where there is no transient speech. Misclassification of dominant speakers due to transient speech was also reduced by 87%

    Experimental Study on the Failure Characteristics and Damage Evolution of Sandstones from Typical Buried Depths in High In Situ Stress Area

    Get PDF
    AbstractThis study is aimed at exploring the mechanical properties and failure characteristics of the rocks surrounding a railway tunnel in Qinghai-Tibet Plateau at typical buried depths. Uniaxial compression and AE experiments were carried out on sandstones taken from the same borehole. The results show that the elastic modulus and peak strength of the 750 m depth sandstones are much higher than those of the 350 m depth sandstones. The crack evolution in the 750 m depth sandstones was more orderly, and its brittle failure characteristics were more obvious as compared with the 350 m depth sandstones. The fractal dimension of the samples from the typical depths reached the minimum value when the fracture volume state changed from compression to expansion. In addition, the damage variable based on the crack volumetric strain theory (DC) and cumulative ring counts of acoustic emission (DA) can, respectively, reflect the generation and penetration of cracks and the physical properties of rocks at the two typical depths. The combination of DC and DA can be used to analyze the evolution of the sandstone’s damage. The research results have basic theoretical significance for the excavation and geological disaster prevention of tunnels in sandstone sections at typical depths in the Qinghai-Tibet Plateau

    NF45/NF90-mediated rDNA transcription provides a novel target for immunosuppressant development

    Get PDF
    Herein, we demonstrate that NFAT, a key regulator of the immune response, translocates from cytoplasm to nucleolus and interacts with NF45/NF90 complex to collaboratively promote rDNA transcription via triggering the directly binding of NF45/NF90 to the ARRE2-like sequences in rDNA promoter upon T-cell activation in vitro. The elevated pre-rRNA level of T cells is also observed in both mouse heart or skin transplantation models and in kidney transplanted patients. Importantly, T-cell activation can be significantly suppressed by inhibiting NF45/NF90-dependent rDNA transcription. Amazingly, CX5461, a rDNA transcription-specific inhibitor, outperformed FK506, the most commonly used immunosuppressant, both in terms of potency and off-target activity (i.e., toxicity), as demonstrated by a series of skin and heart allograft models. Collectively, this reveals NF45/NF90-mediated rDNA transcription as a novel signaling pathway essential for T-cell activation and as a new target for the development of safe and effective immunosuppressants

    Neutrino Physics with JUNO

    Get PDF
    The Jiangmen Underground Neutrino Observatory (JUNO), a 20 kton multi-purposeunderground liquid scintillator detector, was proposed with the determinationof the neutrino mass hierarchy as a primary physics goal. It is also capable ofobserving neutrinos from terrestrial and extra-terrestrial sources, includingsupernova burst neutrinos, diffuse supernova neutrino background, geoneutrinos,atmospheric neutrinos, solar neutrinos, as well as exotic searches such asnucleon decays, dark matter, sterile neutrinos, etc. We present the physicsmotivations and the anticipated performance of the JUNO detector for variousproposed measurements. By detecting reactor antineutrinos from two power plantsat 53-km distance, JUNO will determine the neutrino mass hierarchy at a 3-4sigma significance with six years of running. The measurement of antineutrinospectrum will also lead to the precise determination of three out of the sixoscillation parameters to an accuracy of better than 1\%. Neutrino burst from atypical core-collapse supernova at 10 kpc would lead to ~5000inverse-beta-decay events and ~2000 all-flavor neutrino-proton elasticscattering events in JUNO. Detection of DSNB would provide valuable informationon the cosmic star-formation rate and the average core-collapsed neutrinoenergy spectrum. Geo-neutrinos can be detected in JUNO with a rate of ~400events per year, significantly improving the statistics of existing geoneutrinosamples. The JUNO detector is sensitive to several exotic searches, e.g. protondecay via the pK++νˉp\to K^++\bar\nu decay channel. The JUNO detector will providea unique facility to address many outstanding crucial questions in particle andastrophysics. It holds the great potential for further advancing our quest tounderstanding the fundamental properties of neutrinos, one of the buildingblocks of our Universe

    Potential of Core-Collapse Supernova Neutrino Detection at JUNO

    Get PDF
    JUNO is an underground neutrino observatory under construction in Jiangmen, China. It uses 20kton liquid scintillator as target, which enables it to detect supernova burst neutrinos of a large statistics for the next galactic core-collapse supernova (CCSN) and also pre-supernova neutrinos from the nearby CCSN progenitors. All flavors of supernova burst neutrinos can be detected by JUNO via several interaction channels, including inverse beta decay, elastic scattering on electron and proton, interactions on C12 nuclei, etc. This retains the possibility for JUNO to reconstruct the energy spectra of supernova burst neutrinos of all flavors. The real time monitoring systems based on FPGA and DAQ are under development in JUNO, which allow prompt alert and trigger-less data acquisition of CCSN events. The alert performances of both monitoring systems have been thoroughly studied using simulations. Moreover, once a CCSN is tagged, the system can give fast characterizations, such as directionality and light curve
    corecore